Probabilistic Nonlinear Soft Sensor Modeling Based on Generative Topographic Mapping Regression

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel generative topographic mapping

A kernel version of Generative Topographic Mapping, a model of the manifold learning family, is defined in this paper. Its ability to adequately model non-i.i.d. data is illustrated in a problem concerning the identification of protein subfamilies from protein sequences.

متن کامل

GTM: The Generative Topographic Mapping

Latent variable models represent the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. A familiar example is factor analysis, which is based on a linear transformation between the latent space and the data space. In this article, we introduce a form of nonlinear latent variable model called the generative topographic mappi...

متن کامل

Locally Linear Generative Topographic Mapping

We propose a method for non-linear data projection that combines Generative Topographic Mapping and Coordinated PCA. We extend the Generative Topographic Mapping by using more complex nodes in the network: each node provides a linear map between the data space and the latent space. The location of a node in the data space is given by a smooth nonlinear function of its location in the latent spa...

متن کامل

Generative topographic mapping by deterministic annealing

Generative Topographic Mapping (GTM) is an important technique for dimension reduction which has been successfully applied to many fields. However the usual Expectation-Maximization (EM) approach to GTM can easily get stuck in local minima and so we introduce a Deterministic Annealing (DA) approach to GTM which is more robust and less sensitive to initial conditions so we do not need to use man...

متن کامل

GTM : The Generative Topographic Mapping 21

Latent variable models represent the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. A familiar example is factor analysis which is based on a linear transformations between the latent space and the data space. In this paper we introduce a form of non-linear latent variable model called the Generative Topographic Mapping...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2018

ISSN: 2169-3536

DOI: 10.1109/access.2018.2798664